Steroids and Related Natural Products. III. 4-Oxasteroids^{1,2}

Sir:

Recently, two potentially useful methods for the synthesis of difficultly accessible oxasteroids were reported.³ For example, the reaction between 3β , 17β -diacetoxy- 6β -hydroxy- 5α -androstane and lead tetraacetate was shown to provide 3β , 17β -diacetoxy-6,19-epoxy- 5α -androstane⁴; while boron trifluoride-lithium aluminum hydride reduction of 3β -hydroxy-17-oxo-17a-oxa-D-homo- 5α -androstane was found to yield 3β -hydroxy-17a-oxa-D-homo- 5α androstane.¹ We now wish to present facile syntheses for 17β -hydroxy-4-oxa- 5α -androstane (Ib), 4 $oxa-20-oxo-5\alpha$ -pregnane (IIa) and several related substances, based on the one-step ester \rightarrow ether reaction.¹ We also wish to present structural and stereochemical assignments for the ring-A lactones arising from persulfate oxidation of testosterone propionate and progesterone.

Ozonolysis of testosterone propionate, followed by sodium borohydride reduction of the product, gave lactone III.⁵ Persulfuric acid oxidation of testosterone propionate, in acetic acid solution, and subsequent base hydrolysis, afforded the same 5α lactone (III); m.p. 177-179°, $[\alpha]_D^{22} + 91.7°$ (chloroform). Boron trifluoride-lithium aluminum hydride reduction of lactone III (0.52 g.) followed by acetylation (acetic anhydride-pyridine) yielded 17 β acetoxy-4-oxa-5 α -androstane (Ia, 0.26 g.); colorless rods, m.p. 104-105°, $[\alpha]_D^{22} + 42.8°$ (chloroform). Anal. Calcd. for C₂₀H₃₂O₃: C, 74.96; H, 10.06; O, 14.98. Found: C, 74.91; H, 9.94; O, 15.18. The 17 β -hydroxy derivative Ib recrystallized from aqueous methanol as colorless needles, m.p. 204-

(1) Part II, G. R. Pettit and T. R. Kasturi, J. Org. Chem., 25, 875 (1960).

(2) This investigation was supported by PHS Research Grant CY-4074 (C2S2) from the National Cancer Institute, Public Health Service.

(3) See G. V. Bhide, N. L. Tikotkar, and B. D. Tilak, *Tetrahedron*, 10, 223 (1960); J. T. Edward and P. F. Morand, *Can. J. Chem.*, 38, 1325 (1960); and a recent review by B. D. Tilak, *J. Indian Chem. Soc.*, 36, 509 (1959), for a summary of previous synthetic approaches to oxygen heterocyclic steroids.

(4) A. Bowers, L. C. Ibáñez, M. Elena Cabazas, and H. J. Ringold, *Chem. & Ind. (London)*, 1299 (1960). Synthesis of a steroidal spiroacetal using the lead tetraacetate procedure has been described by P. G. Beal and J. E. Pike, *Chem. & Ind. (London)*, 1505 (1960).

(5) Cf. N. W. Atwater and J. W. Ralls, J. Am. Chem. Soc., 82, 2011 (1960); and C. C. Bolt, Rec. Trav. Chim., 70, 940 (1951). We wish to thank Dr. Atwater for providing an authentic specimen of the 5α -lactone prepared from testosterone benzoate.

206°, $[\alpha]_{22}^{22}$ +43.8° (chloroform). Anal. Calcd. for C₁₈H₃₀O₂: C, 77.71; H, 10.79; active H, 0.36. Found: C, 77.21; H, 10.70; active H, 0.40. Treating an acetone solution of alcohol Ib (0.1 g.) with 8N chromic acid⁶ gave 4-oxa-17-oxo-5*a*-androstane (Ic, 0.06 g.); colorless needles, m.p. 117-119°, $[\alpha]_{22}^{D}$ +114.5° (chloroform). Anal. Calcd. for C₁₈-H₂₈O₂: C, 78.21; H, 10.21; O, 11.58. Found: C, 78.08; H, 10.24; O, 11.63.

Progesterone was oxidized to $4-0xa-5\alpha$ -pregnane-3,20-dione using potassium persulfate.⁷ Reducing the lactone (0.79 g.) in tetrahydrofuran solution with boron trifluoride-lithium aluminum hydride and chromic acid⁶ oxidation of the resulting mixture led to 4-oxa-20-oxo- 5α -pregnane (IIa, 0.54 g.); colorless plates from *n*-hexane, m.p. $144-145^{\circ}$, $[\alpha]_{\rm D}^{22}$ +125.8° (chloroform). Anal. Calcd. for C₂₀-H₃₂O₂: C, 78.89; H, 10.59; O, 10.51. Found: C, 78.82; H, 10.52; O, 10.65. Raney nickel desulfurization of the ethylenethioketal derivative IIb (0.15 g.), m.p. 202-203°, (Anal. Calcd. for C₂₂H₃₆OS₂: C, 69.44; H, 9.54; S, 16.82. Found: C, 69.10; H, 9.51; S, 16.39.) gave 4-oxa-5 α -pregnane (IIc, 0.085 g.); colorless plates from methanol, m.p. 107-108°, $[\alpha]_{D}$ +56.0° (chloroform). Anal. Calcd. for C₂₀-H₃₄O: C, 82.69; H, 11.80. Found: C, 82.35; H, 11.57. Baeyer-Villiger oxidation of ketone IIa (0.5 g.) to 17β -acetoxy-4-oxa- 5α -androstane (Ia, 0.45 g.), with trifluoroperacetic acid, supported the structures and stereochemistry assigned compounds IIa-c.

DEPARTMENT OF CHEMISTRY	GEORGE R. PETTIT
UNIVERSITY OF MAINE	T. R. KASTURI
Orono, Me.	

Received January 3, 1961

(6) K. Bowden, I. M. Heilbron, E. R. H. Jones, and B. C. L. Weedon, J. Chem. Soc., 39 (1946).

(7) A. Salamon, Z. physiol. Chem., 272, 61 (1941).